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A Model of Heat Conduction 
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We construct a model of a chain of a toms coupled at its ends to two reser- 
voirs at different temperatures.  In a weak coupling limit the a toms obey a 
stochastic evolution law and have an equilibrium state with a uniform 
temperature gradient along the chain. 
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1. INTRODUCTION 

We consider a finite, one-dimensional chain of quantum mechanical atoms 
with nearest neighbor interactions coupled at the ends of two infinite quasi- 
free reservoirs at different temperatures, and study the heat flow along the 
chain. While such chains have been considered before, ~2,u,z3,15-~8~ our 
model has two variations which enable it to be asymptotically exactly soluble 
without being superconducting. 

In order to obtain an exact evolution equation for the atoms, we pass to 
the weak coupling limit of the interactions between the ends of the chain and 
the two reservoirs. By itself this would cause heat entering the chain at one 
end to diffuse along it much more rapidly that it could leave at the other end, 
so that in the equilibrium state all atoms of the chain would have the same 
temperature. We therefore make the coupling between atoms of the same order 
of magnitude as the coupling between the ends of the chain and the two 
reservoirs, before passing to the weak coupling limit. 

Our second variation is that we do not couple neighboring atoms 
directly but via intermediate states involving virtual particles. The coupling 
is arranged so that in the long term there can be no transfer of energy between 
the atoms and these particles, which nevertheless have the effect of destroying 
phase relationships between the atoms. While the means by which we achieve 
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this effect is somewhat artificial, we conjecture that some mechanism of this 
type is necessary to obtain a model of  heat conduction. Although we use 
intermediate reservoirs, our model differs f rom that of  Refs. 16 and 18 in 
that we do not need to adjust the reservoir parameters in a self-consistent 
manner in order to prevent the transfer of  heat between these reservoirs and 
the atoms. Moreover in our model this transfer vanishes for all states of  the 
atoms, not just for the stationary state as in Refs. 16 and 18. 

We now specify the model. I f  1 ~< r ~< N, the rth atom is associated 
with a Hamiltonian Hr on the finite-dimensional Hilbert space ~ .  We 
identify any operator A on a'(r with the operator A1 @ A2 | ... | AN on 

~% = ~ | ... | ~e~ 

where Ar = 1 for r r n and An = A. The chain of  atoms then has Hamil- 
tonian 

HA=HI+.. .+HN 

Let {~}~= 0 be the Hilbert spaces in the GNS representation of N + 1 
infinite quasifree fermion reservoirs a'9~ with Hamiltonians K~ and cyclic 
vectors f2r such that Krf~r = 0 for 0 4 r ~< N. The collection of all reservoirs 
has Hilbert space 

~ -- ~-o | ... | ~ 

Hamiltonian 

and cyclic vector 

/4~ = K0 + . . .  + K~, 

f~ = f~o | "'" | f~z~ 

The Hamiltonian of the system plus reservoirs is taken to be 

H= HA + HR + AH1 

on the space ~ @ ~,, where 
N 

H,= ~ A,.| 
r = O  

A0 being a self-adjoint operator on ~0 ,  AN a self-adjoint operator on ~ ,  
Ar a self-adjoint operator on ~ r |  for 1 ~< r ~< N -  1, and q~r a 
bounded linear smeared field operator on ~ for 0 ~< r ~< N. Possible varia- 
tions of the model are discussed at the end of Section 2, while a particular 
example is treated in Section 3. 

Because the reservoirs are quasifree, their effects on the atoms are 
completely determined by the forms of the two-point functions 
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which are continuous, positive-definite functions. In order to be able to apply 
the results of Ref. 3 we need the regularity assumption 

f~[hr(t)[(1 + l t l ) '  < 0o (1) dt 
oo 

for some e > 0. This implies that the Fourier transforms ~(w) are non- 
negative continuous functions on ~. 

Our crucial assumptions on the mode of action of the reservoirs can be 
phrased in terms of the two-point functions. We assume that 

ho ( -  o~) = e-~ho(~O) (2) 

and 

h u ( -  oJ) = e-B.~hN(oJ) (3) 

for all oJ e ~, so that flz and fir are the inverse temperatures of the left and 
right reservoirs, respectively. We also assume that the normal modes of the 
intermediate reservoirs are limited by the condition 

1 ~< r ~< N -  1 and [~o1 /> E:>hr(w)  = 0 (4) 

where E > 0 is small enough that if oJ and oJ' are two different eigenvalues of  
Ha,  then 

lw - co'[ /> E 

The existence of  such an E > 0 is a consequence of the finite-dimensionality 
of ~ .  

2. THE W E A K  C O U P L I N G  L I M I T  

Denoting by J'(J~a) the space of trace class operators on ~ ,  we have 
that the initial state p of the system is an element of 

S={pe~--(JgA):  p > / 0 a n d t r [ p ] =  1} 

The reservoir is taken to be initially in the stationary state v = [f~)(D[ and 
the system plus reservoir is supposed to be in the initial state p | v. The 
state of the system at time t > 0 is then given in the interaction representation 
by 

p~(t) = e iHat tr~[e-mt(p | v ) e ' H t ] e - i H a t  

where try- is the partial trace with respect to the reservoir variables. We pass 
to the weak coupling limit A -+ 0 keeping the rescaled time r = ,Vt constant 
as in Refs. 3 and 14. 
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T h e o r e m  1. For all p e S and ~- >/ 0 

lim ps(A-%) = [exp(K%-)]p 
h~O 

where 

(s) 

where 

AT(t) = em At A re - ~zr ; 

Expanding AT(t) as a finite sum 

A~(t) = "~ A e -t~ 
O9 

where o, runs through all differences of eigenvalues of  Ha, and using 

io hT(t)e ''~ dt = �89 + isr(~o) 

where both fzr and sT are real, continuous functions on ~, we obtain, as in 
Ref. 3, 

Krh(P) -=- E [-Ar,-~176189176 A- iSr(tO)} 
03 

+ Ar.o, pAr,-~o{�89 -- isr(w)) 
1 q- Ar, o~phr,-o~{~hr(eO) -4- iSr(r 

- ear,- aT, (�89 - isT(oO)] 

= E ]~r(oj){__�89 _ r  P __ . ~ p A r  _ coAr,c ~ -4- A r . o p A r . _ c o  ) 
o) 

Each term in the first series describes a stochastic transition transferring 
energy between neighboring atoms, while each term in the second series 

(7) 

1 f-, 
l ema~K{e-mA~Pe~A~} e-mA~ ds (6) K~(p) = lim ~a 

17 

K(p)  = gr(p)  
r = 0  

and Kr: ~ - ( ~ )  --~ ~- - (~)  depend on AT and hr. 

Proof. This is taken directly from Ref. 3, the fact that we have N + 1 
reservoirs instead of just one necessitating only slight extra complications in 
the proof. The operator Kr is given by 

fo ~ Kr(p) = { -Ar( t )Arphr( t )  + Ar(t)pArkr(t) 

+ ArpAr(t)hT(t) - pA,&(t)hT(t)} dt 
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describes an energy level shift of the atoms, of second order in ,~. Our hy- 
potheses on the two-point functions allow us to be much more precise about 
the effect of  each term Kr ~. 

T h e o r e m  2 .  I f  1 ~< r ~< N -  1, then 

Kr~(p) = --i[DT, p] + /~T(0){--�89 -- �89 + Ar,opAr,o} (9) 

where Dr and Ar,o are both self-adjoint, commute with Ha, and lie in 
~ ( ~  | ~ + i ) .  

Proof. Our assumptions on hr in Eq. (4) imply that in the first sum of 
Eq. (8) all terms vanish except that for ~o = 0. Since 

1 ( "  e~O~temAtA~e_i~At dt A,.~ = lira Ta 
g--* oo ~ . _  

1 f ]  e~O~td(H, + H, + 1)tAre- ~(H, + H r + 1)t dt = lim ~-~ . 
~--* ctl 

it follows that both A~,0 and 

D ,  = (10) 

lie in s | o~+~). Equation (7) also implies that both Ar.o and Dr com- 
mute with Ha. 

Theorem 2 allows us to deduce that the intermediate reservoirs cannot 
transfer energy to or from the system of atoms. 

C o r o l l a r y  1. I f  1 ~< r ~< N - 1, then K~ ~ conserves energy in the sense 
that 

tr[Ha{exp(K~,)}O] = tr[Hap] (11) 

for all p ~ S and ~- t> 0. 

Proof. It is immediate from the theorem that 

Kr~(Hap) = HA(Kr~p) (12) 

for all p ~ 9"(~ffA). This implies 

tr[{exp(K~%)}(HAp)] = tr[Ha{exp(K~-r)}p] 

Since also 

for all a e oq-(Jga) 

tr[Kr~o] = 0 

tr[{exp(Kr~z))a] = t r H  

for all ~- i> 0. The corollary results by putting these remarks together. 



166 E.B.  Davies 

Note.  Equation (12) is much stronger than 

Kr~{[HA, p]} = [Ha, Kr~(p)] (13) 

which is an immediate consequence of the definition of ~ in Eq. (6). 

Corollary 2. If  pL is the Gibbs state 

pL = e-BL~lltr[e-BLul] 

of the first atom and a is any state on 3el2 | ... | ~ ,  then pL | a is a 
stationary state for the semigroup exp(K0~r). A similar result holds for 
exp (KN%). 

ProoL This is a direct quotation of  Theorem 4.5 of Ref. 3. 
We have shown that in the limit A-+ 0 the system of atoms evolves 

according to the irreversible dynamical equation 

as 
d--~ = Kr~P (14) 

r = 0  

The terms K0 ~ and KN~ tend to drive the end atoms to their Gibbs states at the 
inverse temperatures/3 L and/3r~. The terms K~ with 1 ~< r ~< N - 1 effect a 
stochastic and conservative transfer of energy between the rth and (r + 1)th 
atoms of the chain. The rate of flow of energy is proportional to A2 because 
of the time rescaling. 

We end this section with comments on some possible variations of the 
model. 

(i) We have seen that translation invariance of the chain is not necessary, 
and it is clear that the dimensionality and degree of interconnectedness of the 
array of atoms may be arbitrary. 

(ii) The model may be solved with boson reservoirs as in Ref. 14 but one 
does not then have the possibility of flL and/3~ being negative. 

(iii) If  the reservoirs are not quasifree, one needs to impose rather strong 
conditions on the time decay of the n-point functions as n---> ~ .  Their 
validity for general reservoirs is not known, although they are satisfied in 
some cases. (6> 

(iv) We have presented our model in the weak coupling limit, but the 
same estimates deal with certain singular coupling limits, for which time 
rescaling is not necessary. (7,~2> 

(v) We have taken each of the atoms to be finite-dimensional, but one 
may deal with infinite-dimensional atoms whose Hamiltonians have pure 
point spectra by using the techniques of Refs. 4 and 5. 

�9 (vi) If  the coupling between all pairs of atoms is effected by a single 
intermediate reservoir, then K~ will contain more complicated terms involving 
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four atoms. A number of other variations on the interaction term HI are 
possible. 

(vii) In particular, by suitable choices, one may derive the stochastic 
dynamics of the Ising model in the weak coupling limit/~~ 

3. E Q U I L I B R I U M  S T A T E  OF  T H E  A T O M S  

We describe a concrete example where the evolution equation (14) and 
the equilibrium state of the system of atoms may be explicitly determined. 
We let each ~ be two-dimensional and define the operators Pr, Qr, Rr, and 
Lr on ~ by 

P ' - - ( ' 0  00)' Q -  (0 0 0), R r - - r  10)' '~ '=  (01 ~) 

We let the rth atom have Hamiltonian 

/-/~ = �89  - ~ E Q r  

where E > O. We let 

Ao = R1 +L1,  Air = R N + L N  

while i f l  ~< r ~ N -  1 

~4~ = (R~ + L~) | (Rr+ 1 + Lr+l) 

The possible values of the operators A~,,o are tabulated in Table L 
Since 

= {X ~ s  [X, H~] = 0 all r} 

= { P ~ , Q , :  1 <~r<~N}"  

is an Abelian von Neumann algebra of dimension 2 N, the set of states 

So ={pelV': p i> 0andtr[o]= 1} 

-2E 
--E 
0 
E 
2E 

Table I 

0 N l < r < ~ N - 1  

0 0 R, | R,+l 
R1 RN 0 
0 0 R~ | Lr+z + Lr | R,+z 
Lz LN 0 
0 0 L, | Lr+z 
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may be identified with the set of all probability measures on {0, 1} N, the rth 
coordinate of a point in {0, 1} N being equal to one if the rth atom is excited. 

T h e o r e m  3. If p e So, then 

K~(p) = ho(E){- �89 - �89 + L:I.pR1} 

+ h o ( - E ) { - � 8 9  - �89 + R~pL~} 

+ AN(E){--�89 -- �89 + LNpRN} 

+ h N ( - E ) { - � 8 9  - �89 + RNpLN) 

N - 1  

+ L(o){-�89 - �89 + 
r = X  

- �89 - k,oe,.+lQ.  + R Z;T+ t, Rr+ L } (15) 

Moreover, 

[exp(K%')](S0) ~_ So (16) 

for all ~- >1 0, and exp(K~-) describes a classical 'Markov semigroup on 
{0, 1} N. 

Proof. From Table I we see that every operator At, _ o, Ar,o~ lies in ~,  so that 
if p ~ So, then the commutator in Eq. (8) vanishes. The first two terms in 
Eq. (15) then give Ko~(p), while the second two terms give KN~(p). We show 
that if p e So, each term of the series in Eq. (15) equals K~(p). 

By Eq. (9), if p e So, then 

Kr~(p) ~tr(0){_ �89 op 1 2 = , -- -~pA~,o + Ar,opAr,o} 

= ~r(0){ -- �89 @ t r  + 1 + Lr @ Rr + 1)2p 

- �89 | LT + 1 + L~ | R r + :1)9 

+ (R~ |  + Lr @ R~+~)p(Rr |  + L~ @ R~+~)} 

= hr(O){- �89 + Orer+l)p - {p (Prar+l  + Q~P~+~) 

+ Rr+lLrpRrLr+l + RrLr+lpRr+lLr} 

since 

RrpRr = LrpLr = 0 

i f p ~ S o .  
Having established Eq. (15), we see that K~(~ff) _ ~,  so that 

[exp(K~-)](~//") ~ -r 

for all ~- t> 0. Equation (16) follows since exp(K~-) preserves positivity and 
trace.(a) 
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The classical Markov process, known as a Markov population process, (8~ 
may be described as follows. The first atom becomes deexcited at the rate 
J~o(E) and excited at the rate /~o(-E) = e-BLE[~o(E) because of its contact 
with the left reservoir. The Nth atom becomes deexcited at the rate/~N(E) 
and excited at the rate /~N(--E) = e-B"E[~N(E) due to its contact with the 
right reservoir. If  1 ~< r ~< N -  1, excitations are exchanged between the 
rth and (r + 1)th atoms in both directions at the same rate/#(0). It is clear 
that if all the above coefficients are nonzero, the Markov process is irre- 
ducible, so that the process has a unique stationary state po. 

We describe the temperature gradient along the chain in the stationary 
state by means of the map 0: So ~ C n defined by 

(Op)~ = tr[Prp] 

this representing the probability that the rth atom is excited. 

T h e o r e m  4. The stationary probabilities of excitation ar = (Opo)~ are 
obtained by solving the equations 

{~o(-E)  + ho(E) + ~1(0)}al - ~l(O)a~ = h o ( - E )  

-~ -1 ( 0 ) , , r  + {/ i~(-E)  + ~N(E) + /~-I(0))~N = ~ ( - E )  

and i f 2  ~< r ~< N -  1, 

h,_1(0)~,_1 - {h,_l(O) + ~,(O)}a, + ~,(O)a~+~ = 0 

Proof .  If A': C N -+ C N is the affine map 

(g") l  = ~ 0 ( - E ) 0  - al) - ho(E)al  - ~1(0)al + ~1(0),~ 

(ga)z~ = hN(-E)(1 - aN) - [~N(E)a~v -- [~N- I(O)aN + ,~N- ~(O)aN_ ~ 

while i f2  ~< r ~< N -  1, 

(K~)~ = -~r-l(0)a~ + h~_~(0)a~_~ - h~(0)~ + ~(0)a~+~ 

then direct computation shows that 

K(Op) = O(K~p) 

for all p ~ So. Since K~po = 0, it follows that Ka = 0. 
By their definition, the coefficients ]z~(0),/~0(+ E), and/~u(+ E) are non- 

negative. If  they are strictly positive, the equations for u~ are uniquely soluble. 
If the chain has uniform conductivity }, = hr(0), then the probability of 
excitation increases linearly from one end of  the chain to the other. If 7 is 
small compared with ,~o(+ E) and ~u(+ E), then the temperatures of the end 
atoms are approximately equal to those of their adjacent reservoirs. It is also 
elementary to compute the heat flux between the two reservoirs in the 
stationary state. 
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